Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Formal Languages & Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART -- A

- What is Automata? Discuss why study automata.
 - Mention the differences between DFA, NFA and NFA-€.
 - Design a DFA to accept the language $L = \{W/W \text{ is of even length and begins with } 01\}$.
 - (06 Marks)

- Design the NFA-∈ or NFA for the languages given below:
 - i) abc, abd and aacd {Assume $\sum = a, b, c, d$ }
 - ii) {ab, abc}* {Assume $\sum = a, b, c$ }

(04 Marks)

Covert the following NFA-∈ to DFA using "Subset construction scheme". (08 Marks)

Fig. Q2 (a)

- Define Regular expression and write regular expression for the following languages:
 - i) $L = \{a^{2n}b^{2m} : n \ge 0, m \ge 0\}$
 - ii) Language over {0, 1} having all strings not containing 00.

(06 Marks)

Convert the regular expression $(0+1)^*1(0+1)$ to a NFA- \in .

(06 Marks)

- State and prove pumping Lemma theorem for regular languages. 3 $L = \{a^n b^n, (a \ge 0)\}$ is not regular. (08 Marks)
 - What is Homomorphism? Explain with an example.

(04 Marks)

Consider the transition table of DFA given below:

	• 9	Ĺ
→A	В	A
В	A	C
C	D	В
*D	D	A
E	D	F
F	G	Е
G	F	G
Н	G	D
Fig. $\overline{Q3}$ (c)		

- i) Draw the table of distinguishabilities of states.
- ii) Construct the equivalent minimized DFA.

(08 Marks)

Obtain a grammar to generate integers and write derivation for the unsigned integer 1965. b. Consider the grammar: $S \rightarrow aS \mid aSbS \mid \epsilon$ Is the above grammar ambiguous? Show that the string aab has two – i) Parse trees ii) Left most derivations iii) Rightmost derivations PART - B Define PDA. Design PDA to accept the language $L(M) = \{\omega C\omega^R \mid \omega \in (a)^*\}$ by a final 5 state and also give the graphical representation of PDA. (12 Marks) b. Convert the following CFG to PDA: $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$ $C \rightarrow a$ (08 Marks) 6 a. Consider the following grammar: $S \rightarrow ASB \in$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$ i) Are there any useless symbols? Climinate if so. ii) Eliminate ∈ productions. iii) Eliminate unit productions. iv) Put the grammar into Chomsky Normal Form. (08 Marks) b. Show that $L = \{a^n b^n c^n | n \ge 0\}$ is not context free. (04 Marks) c. Prove that the context free languages are closed under union, concatenation and reversal. (08 Marks) 7 a. Design a turing machine that performs the following function: $q_0\omega \models *q_1\omega\omega$ for any $\omega \in \{1\}$ * and also write its transition diagram. (12 Marks) Explain the general structure of multitape and non deterministic turing machines. (08 Marks) Write short notes on: Applications of regular expressions. Applications of context free Grammars. Post's correspondence problem. Chomsky hierarchy. (20 Marks)